2015 MINNESOTA BUILDING ENERGY CODE

SUMMARY OF KEY RESIDENTIAL ENERGY CODE REQUIREMENTS

The 2012 IECC with amendments became effective in Minnesota on February 14, 2015. This document summarizes changes to the building envelope-related requirements in the updated code for Minnesota.

CODE CHANGE HIGHLIGHTS

- The Minnesota energy code included amendments from the 2015 IECC to provide cavity-only insulation options for both Climate Zones 6 and 7.
- Air leakage testing is mandatory. Visual inspection is not permitted.
- Minnesota has extensive requirements for installing insulation in below-grade applications. For fiberglass use in the interior of basement walls, refer to section R402.1.1.7 of the Minnesota Building Energy Code.

BUILDING ENVELOPE AND DUCT REQUIREMENTS

CORE DATI	0040 JEOO OODE OFOTION	CHANGE SUMMARY	
CODE PATH 2012 IECC CODE SECTION	2012 IECC CODE SECTION	CLIMATE ZONE 6	CLIMATE ZONE 7
	R402.1.1 – Wood Frame Wall	R-20 or R-13 + 5 ci / U-0.048	R-21 / U-0.048
Prescriptive	R402.1.1 - Ceilings	R-49 / U-0.026	R-49 / U-0.026
	R402.1.1 - Basement Walls	R-15 / U-0.050	R-15 / U-0.050
	R402.1.1 - Crawl Space Walls	R-15 / U-0.055	R-15 / U-0.055
	R402.1.1 - Fenestration	U-0.32	U-0.32

DUCT LEAKAGE DUCT R-VALUE

MEASUREMENT	CFM25 / 100 SQ. FT.	R-VALUE	
Rough-in (installed air handler)	4		
Rough-in (air handler not installed)	3	R-8ª	
Post-construction	4		

AIR LEAKAGE

CLIMATE ZONE MEASUREMENT
6 3 ACH50
7 3 ACH50

d ventilated able R403.2.1

MORE INFORMATION ON THE MINNESOTA BUILDING ENERGY CODE CAN BE FOUND HERE:

https://codes.iccsafe.org/content/MEC2015/chapter-4-re-residential-energy-efficiency

ENERGY-EFFICIENT, COST-EFFECTIVE CONSTRUCTION WITH FIBERGLASS AND MINERAL WOOL INSULATION

As code levels advance, **keep informed about innovative practices** to meet or exceed code requirements using cost-effective fiberglass and mineral wool insulation.

The following resources in the table below are just a subset of the many guides available from the **Insulation Institute** to help you achieve new performance requirements with proven approaches.

INSULATION INSTITUTE RESOURCES

Priority Air Sealing Locations for New Homes

GRADE

Air Leakage

As states adopt more stringent energy codes, some builders may experience challenges meeting new mandatory air leakage requirements. Fiberglass and mineral wool insulation is the low-cost solution for homebuilders to meet or surpass code air leakage rate requirements of 3 or 5 air changes per hour depending on climate zone. For homeowners, an airtight building envelope results in energy savings and increased thermal comfort.

https://insulationinstitute.org/wp-content/uploads/2018/05/N090-5-Air-Sealing-Locations-for-New-Homes.pdf

Ducts Buried Within Ceiling Insulation Deeply buried ducts in attics is an easy way to lower energy code compliance costs for builders using the simulated energy performance path. Homeowners can benefit from energy savings realized from lower-capacity, lower-cost HVAC systems.

https://insulationinstitute.org/wp-content/uploads/2019/03/N087-Buried-Ducts-Thenewest-way-to-uncover-savings.pdf

Proper Installation of Insulation

Grade I installation delivers superior energy efficiency and is increasingly required by state energy codes. Insulation installation jobs that fail to meet Grade I criteria can mean construction delays due to callbacks, HERS rating penalties, and failed code inspections. Grade I installation is readily achievable by following basic guidelines as recommended by manufacturers. NAIMA offers free online training for installers.

www.grade1insulation.org

Unvented Attics Using Fiberglass and Mineral Wool Insulation Unvented attics can be constructed by installing fiberglass or mineral wool insulation below the roof deck instead of using more costly materials like spray foam. In addition, fiberglass and mineral wool insulation products are green certified and do not carry recommended occupancy restrictions due to product off-gassing after installation. Starting with the 2018 IRC, this practice is outlined in detail within the code. Homeowners benefit from lower construction costs and the use of a safe product.

https://insulationinstitute.org/wp-content/uploads/2018/05/BuildingUnventedAtticAssemblies-N089.pdf

LEARN MORE TO SEE HOW THE ENERGY CODE SAVES YOU MONEY:

https://insulationinstitute.org/wp-content/uploads/2024/10/ Modern-Energy-Codes-Save-Money-Infographic.pdf

Get the Facts for a Stronger Business

Learn more about fiberglass and mineral wool insulation at InsulationInstitute.org

